Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

نویسنده

  • Benjamin L Turner
چکیده

Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest.

Tropical forests have high rates of soil carbon cycling, but little information is available on how roots, arbuscular mycorrhizal fungi (AMF), and free-living microorganisms interact and influence organic matter mineralization in these ecosystems. We used mesh ingrowth cores and isotopic tracers in phospholipid fatty acid biomarkers to investigate the effects of roots and AMF mycelia on (1) mic...

متن کامل

Physical Conditions Regulate the Fungal to Bacterial Ratios of a Tropical Suspended Soil

As a source of ‘suspended soils’, epiphytes contribute large amounts of organic matter to the canopy of tropical rain forests. Microbes associated with epiphytes are responsible for much of the nutrient cycling taking place in rain forest canopies. However, soils suspended far above the ground in living organisms differ from soil on the forest floor, and traditional predictors of soil microbial...

متن کامل

Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterize...

متن کامل

Phosphorus Sorption Dynamics of Anion Exchange Resin Membranes in Tropical Rain Forest Soils

SSSAJ: Volume 75: Number 4 • July–August 2011 Soil Sci. Soc. Am. J. 75:1520-1529 Posted online 7 June 2011 doi:10.2136/sssaj2010.0390 Received 13 Oct. 2010. *Corresponding author ([email protected]). © Soil Science Society of America, 5585 Guilford Rd., Madison WI 53711 USA All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic ...

متن کامل

Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland

Biogeochemical properties, including nutrient concentrations, carbon gas fluxes, microbial biomass, and hydrolytic enzyme activities, were determined along a strong nutrient gradient in an ombrotrophic peatland in the Republic of Panama. Total phosphorus in surface peat decreased markedly along a 2.7 km transect from the marginal Raphia taedigera swamp to the interior sawgrass swamp, with simil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 76 19  شماره 

صفحات  -

تاریخ انتشار 2010